Spontaneous domain formation in disordered copolymers as a mechanism for chromosome structuring

نویسندگان

  • Matteo Negri
  • Marco Gherardi
  • Guido Tiana
  • Marco Cosentino Lagomarsino
چکیده

Motivated by the problem of domain formation in chromosomes, we studied a co–polymer model where only a subset of the monomers feel attractive interactions. These monomers are displaced randomly from a regularly-spaced pattern, thus introducing some quenched disorder in the system. Previous work has shown that in the case of regularly-spaced interacting monomers this chain can fold into structures characterized by multiple distinct domains of consecutive segments. In each domain, attractive interactions are balanced by the entropy cost of forming loops. We show by advanced replica-exchange simulations that adding disorder in the position of the interacting monomers further stabilizes these domains. The model suggests that the partitioning of the chain into welldefined domains of consecutive monomers is a spontaneous property of heteropolymers. In the case of chromosomes, evolution could have acted on the spacing of interacting monomers to modulate in a simple way the underlying domains for functional reasons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-7: Y Chromosome Microdeletions Are Not Associated with Spontaneous Recurrent Pregnancy Loss in A Sinhalese Population in Sri Lanka

Background: Many advances have been made in reproductive medicine yet the spontaneous loss of a pregnancy remains the most common complication of pregnancy. The aetiology of spontaneous recurrent pregnancy loss (RPL) is multifactorial. Y chromosome microdeletions are found in approximately 7% of men with low sperm counts and, compared to the general population, a higher frequency of spontaneous...

متن کامل

Spontaneous onion shape vesicle formation and fusion of comb-like block copolymers studied by dissipative particle dynamics

A dissipative particle dynamics (DPD) simulation is performed to investigate the spontaneous onion shape vesicle formation and fusion of A6(B2)3 type comb-like block copolymers with a semiflexible hydrophobic backbone. Our results show that comb-like block copolymers of A6(B2)3 type may be a good candidate for onion shape vesicle formation. The spontaneous fusion dynamics between the onion shap...

متن کامل

Thermal-oxidative Degradation of PGA, PLLA, and Random Binary PLLA-PGA Copolymers

Dimerization process is essential for producing copolymers. The features of dimerization process like thermal-oxidative degradation should be well known to reach maximum efficiency and a superior reactor design. Also, the degradation mechanism of biodegradable polymers is important during sterilization processes. Thermal-oxidative degradation of PGA, PLLA, and their binary copolymers was invest...

متن کامل

Colchicine inhibition of microtubule assembly via copolymer formation.

Colchicine.tubulin complex (CD) inhibits microtubule assembly. We examined this inhibition under conditions where spontaneous nucleation was suppressed and assembly was restricted to an elongation polymerization. We found that CD inhibited assembly by a mechanism which preserved the ability of microtubule ends to add tubulin. This observation is inconsistent with the end-poisoning model which r...

متن کامل

Dynamics of Spontaneous Vesicle Formation in Dilute Solutions of Amphiphilic Diblock Copolymers

We study the dynamics of vesicle formation in an initially homogeneous dilute solution of amphiphilic diblock copolymers, using the external potential dynamics (EPD) method. The system was quenched into the unstable two phase region inside the spinodal curve. We discover a new pathway of spontaneous vesicle formation: First, spinodal decomposition sets in and the fluid acquires a weakly modulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018